Roll No.

328551(28)

B. E. (Fifth Semester) Examination, April-May 2021

(New Scheme)

(Et&T Engg. Branch)

LINEAR INTEGRATED CIRCUITS & APPLICATIONS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two from (b), (c) and (d) of each question. Any missing data may be suitably assumed.

Unit-I

1. (a) Define CMRR. What should be its Ideal Value? 2

- 6	
	3

	E wasging Learn	
(b)	What is the concept of virtual ground in an operational amplifier? For voltage series feedback amplifier, derive expression for input and output resistance with feedback.	7
151(c)	Define Slew Rate. What causes slew rate? How is slew rate measured? An operational amplifier has a slew rate of 2 V/ μ sec . of the peak output is	
	15 V, what is the power bandwidth?	7
(d)	For an op-amp the value of R_F and R_1 are 100 k Ω and $1\mathrm{k}\Omega$ respectively. It is an inverting amplifier with input offset voltage drift of 14 $\mu\mathrm{V}/^{\circ}\mathrm{C}$ and input offset current drift of 0.5	
	$\rm nA/^{\circ}C$. The amplifier is nulled at 25°C. Calculate	
	the error voltage E_V and the output voltage at 45°C if the input in 7 mV dc.	7
2. (a)	What is a Voltage Follower? Draw its circuit diagram.	2

	(b)	Explain the operation of practical integrator circuit	
		using operational amplifier and also draw its	
		frequency response.	7
		Tegnatat-u	
	(c)	Draw the circuit of a full wave precision rectifier	
		and explain how it behaves as absolute value circuit.	
		Draw waveforms.	7
	(d)	Design a three op-amp instrumentation amplifier to	
		vary a gain from 1 to 10,000.	7
		Unit-III	
3.	(a)	Define Resolution and Monotonicity.	2
	` /	in Define lock engage and enfance range.	
	(b)	Define and explain the specification of Digital to	
		Analog Converter (DAC).	7
		وبرراطين بيا جرية الباشات	
	(c)	Explain Dual Slope Analog to Digital Converter	
		with its functional diagram and explain the function	
		of each component used.	7
	(d)	Explain the successive approximation A/D con-	2.2
		verter technique with the help of block diagram.	7
		Lazze antigo mana? - to	

4.		Define Safe Operationg Area (SOA).	2
	(b)	List and explain the characteristics of Voltage Regulator.	7
		Explain how adjustable voltage regulator IC works.	
		Derive the expression for the output voltage for LM337 adjustable voltage regulator?	7
	(d)	Explain internal structure of IC 723. Also explain	
		the pins of IC 723.	7
		Unit-V	
5.	(a)	Define lock range and capture range.	2
	(b)	Draw the block diagram of PLL and explain the working of each block.	7
		wma hitigal or golunt and Sland things! (5)	,
		Explain the working of PLL as an AM detector	
		and as frequency synthesizer.	7
	(d)	Explain the following application of multiplier along-	
		with necessary circuit diagram:	7
		(i) Square rooting circuit	
		(ii) RMS calculator	
	rd.		